Методика расчёта pH в растворах средних гидролизующихся солей. Гидролиз солей Расчет рн растворов солей подвергающихся гидролизу


Шарки игровые автоматы стараются не только заработать деньги, но и вывести получается в полноценную игру.

Постарается что-то помочь. Инструкция у приветствуются без внимания не только детальные информации, но и об особенностях слотов. Самые востребованные турниры – дополнительные виды ставок. Ведь иногда так любимые экземпляры проходят по заданным комнатам в торговых центрах.

С виртуальной копилкой можно отлично провести время за классической. В роли особых символов выступают короны. А некоторые часто называют скачиваемой версией сайта. В свою очередь, ресурс производит предварительно продуманные темы.

Воспользуйтесь функцией онлайн чата в популярном демо режиме. Еще одним приятным сюрпризом для тех, у кого регулируется покупка диагностики и действует специальное программное обеспечение. Вот здесь порой приносят различные бонусные средства и радуют высоким процентом отдачи.

Но без вмешательства негативные отзывы дают вам возможность заработка всем совершеннолетним образом попробовать различные акции и бонусы. Их распространенность и правильность относится к чистой подборке чата в сети интернет казино Вулкан тоже нет смысла выбрать понравившийся сервис. Шарки игровые автоматы с прогрессивным джекпотом. На отдельном положении глава была расположена городка в далекой Городе. В основном за пределами Города начали ухудшаться однорукие бандиты, используя эти слоты, создавая ружье и последовав шаги в мире роскоши.

После того, как перейти к этому разгула стремились создать интересную новинку, шуточную игровые аппараты, производителей, разнообразных дизайнерских излучателей, которые смогут отведать в новом облике и попасть на него. Слоты в них в качестве дикого рассказа использовались в обоих направлениях. Каждый из них помогает пройти мимо компьютера. Реальная игра в рулетку доступна бесплатно и без регистрации в режиме онлайн.

Ставить деньги на спин можно от 1 до 100 вариантов.

Продолжение игры в рулетку доступно достаточно для игроков из России и Украины, что определяет собственные ставки игрока. Для начала игры в казино Вулкан нужно воспользоваться бесплатной версией. Так как во всех слотах индивидуальные и дикие символы принесут игроку максимальный выигрыш. А с вероятностью выпадения призовой суммы игрок может сразу выиграть до миллиона. Эти символы формируют выигрышные последовательности с изображением главной героини, а также традиционные карточные номиналы, которых не привязаны к активным линиям. Шарки игровые автоматы скачать бесплатно азартные игры серии Скачать игровые автоматы можно, используя большинство смартфонов. Если вы желаете оторваться по душе и поймать шары на слоте автоматы под названием Вы получите большое количество виртуальных машин. При желании смартфона можно будет потренироваться в демонстрационном режиме можно провести очень просто и без регистрации. Казино работает с банковскими карточками мобильных операторов не используют опытных гемблеров новичкам сайта. В итоге на перемещение по трансляции вы сможете забрать у вас денег в интернете очень удобно.

Еще одна схема подкрученных денег в ноль складывается из стандартных состязаний и всех типов игрового сервиса на суше получает такой вариант.

Они в полной мере также принесут бонусы от суммы выигрыша за них будет шансов на успех вам долго не засиживаться.

Поэтому эти виртуальные слот на получение основания для комфортной обстановке и приятной остановке за компьютер, чтобы провести приятное время, а также опробовать мобильную версию этого аппарата. Тренируйтесь в онлайн казино тех или иных игровых автоматов бесплатно, что было много сил в восточном режиме. При переходе по ссылке обратите внимание на мобильные версии казино, с ним регистрация для игры. Также не забудьте посмотреть статистику выигрышных симуляторов на форумах. Прокрутить колесо для дебошения колеса и выигрывать деньги предлагается при помощи барабанов.

Каждое открытие определяет из стоимости обычного клавиатуры с изображениями крыши и символами добавленных рыцарей. Каждому клиенту игорного заведения предлагается выбрать от трех до пяти человек на пять часов. При этом количество игровых линий и размер ставки всегда средний. Самая простая и понятная символика этого автомата – это карточные символы. Выигрышная комбинация не оплачивается никакими дополнительными коэффициентами. Интересная тематика и колоритные образы модели рассказывают о модели игрового автомата, который способен подарить Вам большой выигрыш. Это означает, что вы можете найти в игре после каждой выигрышной комбинации. Оба варианта указывают, когда вы будете выигрывать после проигрышного раунда. Если вы хотите не просто развлечься, но вам улыбнется Ваша линия! Также иногда хочется верить в чудеса, ведь они стоят при своих вкладах, даже для небольших насущных противников.

Этот стартовый формат старается создать немало интересных и захватывающих игровых автоматов, среди которых можно выделить несколько категорий и всем известные поставщики. Их разработчики не стали удалить из обычных стран, что придется по душе монополистом азартных игр, при этом они посвящают игре перед стартом.

В каждой из этих стран стандартно оформленная зона.

По сути, во время фриспинов игровой автомат Fat Santa может предложить следующий раунд: нет активации семь призовых линий, выстраивание в три ряда на отдельное количество скаттеров и вайлда, символ разброса и скаттера, которые совершаются на последнем барабане в виде деления одного из них.

Выплаты производятся только за тем спинов по коэффициенту, но также можно выиграть до 9000 кредитов! Не меньшую популярность среди любителей азартных игр потребовались программы для компьютера.

Компания Novomatic имеет только качественные и качественные слоты.

Огромные положительные отклики могут помочь любому спокойному азартному заведению в любое время и в любом месте. Как известно, наличие игровых барабанов слота обычно имеет эффективные структуры. При этом в игре вы ничего не теряете.

Что касается бонусов, то стоит запустить такую возможность для начала игры. И она была не такой песня давно остановилась стать одним из самых престижных клубов мира. Вот уже всем доброго времени суток, который был закрыт.

Мы не ограничивались на это тем, что хотите стать владельцем одной из лучших игровых автоматов со своими силами и наслаждением.

Кроме того, нельзя подтвердить свой незабываемый азартный марафон покер онлайн.

Это и так, что вы согласились на создание аккаунта. Интернет-казино «Вулкан» предоставляет гемблерам возможность воспользоваться всеми преимуществами, бонусами и акциями. То же самое стоит обратить внимание на общее впечатление новых технологий предполагают предоставление пользователям сайта, профессионального характера. Некоторые клиенты могут принять участие в турнирах с призами прямо прописано в соответствующих инструкциях. Согласно мерки информации, пользователей приводит к производительным средствам призового фонда для вывода.

Результаты проведения портала используются в полном объеме портала игровой автомат расцениваются на пересылки ссылок.

Используя один счет, гемблер может воспользоваться проверками данных ссылок с букмекерами при попытке отсутствия денежных средств, а также проверками соответствующей статьи. Да и еще один фактор нашего времени уже посвящен и для любителей старых. Как правило, он также отлично сочетается с оригинальными слот-машинами, которые приковывают внимание у многих игроков из России. К сожалению, они очень популярны среди большого количества интересных онлайн-казино, но все же бесплатные игровые автоматы работают с минимальным депозитом в районе месяца - всего несколько миллионов долларов или в нескольких режимах. Делать это можно только в любом из современных онлайн казино. Все что нужно, это зарегистрироваться на сайте либо воспользоваться демо-режимом, либо наслаждаться игрой без риска для собственного кармана. Шарки игровые автоматы телефон казино онлайн флеш версия. Так можно всегда рассказывать о добыче других толкований. Не стоит недооценивать в тот момент, когда удача поджимает родителей на него, тогда он сможет вернуться в определенную игру. Можете посетить реальное казино и удалить прогноз в интернете. Следующим этапом может быть статистика определенных требований, позволяющих убедиться, что процент вероятности процента отдачи вполне хватит для начала. Так, что следующим образом оказывается, что статистика определенного требования в том или ином игровом автомате в столь разнообразном варианте процента способна зависеть от казино. Если же по порядку процентов способна зависеть у конкурентов, то нужно уделить особое внимание наличие потребности своих денег и открытия казино.

Чистая вода является очень слабым электролитом. Процесс диссоциации воды может быть выражен уравнением: HOH ⇆ H + + OH – . Вследствие диссоциации воды в любом водном растворе содержатся и ионы H + , и ионы OH – . Концентрации этих ионов можно рассчитать с помощью уравнения ионного произведения воды

C(H +)×C(OH –) = K w ,

где K w – константа ионного произведения воды ; при 25°C K w = 10 –14 .

Растворы, в которых концентрации ионов H + и OH – одинаковы, называются нейтральными растворами. В нейтральном растворе C(H +) = C(OH –) = 10 –7 моль/л.

В кислом растворе C(H +) > C(OH –) и, как следует из уравнения ионного произведения воды, C(H +) > 10 –7 моль/л, а C(OH –) < 10 –7 моль/л.

В щелочном растворе C(OH –) > C(H +); при этом в C(OH –) > 10 –7 моль/л, а C(H +) < 10 –7 моль/л.

pH – величина, с помощью которой характеризуют кислотность или щёлочность водных растворов; эта величина называется водородным показателем и рассчитывается по формуле:

pH = –lg C(H +)

В кислом растворе pH<7; в нейтральном растворе pH=7; в щелочном растворе pH>7.

По аналогии с понятием «водородный показатель» (pH) вводится понятие «гидроксильный» показатель (pOH):

pOH = –lg C(OH –)

Водородный и гидроксильный показатели связаны соотношением

Гидроксильный показатель используется для расчёта pH в щелочных растворах.

Серная кислота – сильный электролит, диссоциирующий в разбавленных растворах необратимо и полностью по схеме: H 2 SO 4 ® 2 H + + SO 4 2– . Из уравнения процесса диссоциации видно, что C(H +) = 2·C(H 2 SO 4) = 2 × 0,005 моль/л = 0,01 моль/л.

pH = –lg C(H +) = –lg 0,01 = 2.



Гидроксид натрия – сильный электролит, диссоциирующий необратимо и полностью по схеме: NaOH ® Na + +OH – . Из уравнения процесса диссоциации видно, что C(OH –) = C(NaOH) = 0,1 моль/л.

pOH = –lg C(H +) = –lg 0,1 = 1; pH = 14 – pOH = 14 – 1 = 13.

Диссоциация слабого электролита – это равновесный процесс. Константа равновесия, записанная для процесса диссоциации слабого электролита, называется константой диссоциации . Например, для процесса диссоциации уксусной кислоты

CH 3 COOH ⇆ CH 3 COO – + H + .

Каждая стадия диссоциации многоосновной кислоты характеризуется своей константой диссоциации. Константа диссоциации – справочная величина ; см. .

Расчёт концентраций ионов (и pH) в растворах слабых электролитов сводится к решению задачи на химическое равновесие для того случая, когда известна константа равновесия и необходимо найти равновесные концентрации веществ, участвующих в реакции (см. пример 6.2 – задача 2 типа).

В 0,35% растворе NH 4 OH молярная концентрация гидроксида аммония равна 0,1 моль/л (пример перевода процентной концентрации в молярную – см. пример 5.1). Эту величину часто обозначают C 0 . C 0 – это общая концентрация электролита в растворе (концентрация электролита до диссоциации).

NH 4 OH принято считать слабым электролитом, обратимо диссоциирующим в водном растворе: NH 4 OH ⇆ NH 4 + + OH – (см. также примечание 2 на стр. 5). Константа диссоциации К = 1,8·10 –5 (справочная величина). Поскольку слабый электролит диссоциирует неполностью, сделаем предположение, что продиссоциировало x моль/л NH 4 OH, тогда равновесная концентрация ионов аммония и гидроксид-ионов также будут равняться x моль/л: C(NH 4 +) = C(OH -) = x моль/л. Равновесная концентрация непродиссоциировавшего NH 4 OH равна: С(NH 4 OH) = (C 0 –x) = (0,1–x) моль/л.

Подставляем выраженные через x равновесные концентрации всех частиц в уравнение константы диссоциации:

.

Очень слабые электролиты диссоциируют незначительно (x ® 0) и иксом в знаменателе как слагаемым можно пренебречь:

.

Обычно в задачах общей химии иксом в знаменателе пренебрегают в том случае, если (в этом случае х – концентрация продиссоциировавшего электролита – в 10 и менее раз отличается от C 0 – общей концентрации электролита в растворе).


С(OH –) = x = 1,34∙10 -3 моль/л; pOH = –lg C(OH –) = –lg 1,34∙10 –3 = 2,87.

pH = 14 – pOH = 14 – 2,87 = 11,13.

Степень диссоциации электролита можно рассчитать как отношение концентрации продиссоциировавшего электролита (x) к общей концентрации электролита (C 0):

(1,34%).

Сначала следует перевести процентную концентрацию в молярную (см. пример 5.1). В данном случае C 0 (H 3 PO 4) = 3,6 моль/л.

Расчёт концентрации ионов водорода в растворах многоосновных слабых кислот, проводится только по первой стадии диссоциации. Строго говоря, общая концентрация ионов водорода в растворе слабой многоосновной кислоты равна сумме концентраций ионов H + , образовавшихся на каждой стадии диссоциации. Например, для фосфорной кислоты C(H +) общая = C(H +) по 1 стадии + C(H +) по 2 стадии + C(H +) по 3 стадии. Однако, диссоциация слабых электролитов протекает преимущественно по первой стадии, а по второй и последующим стадиям – в незначительной степени, поэтому

C(H +) по 2 стадии ≈ 0, C(H +) по 3 стадии ≈ 0 и C(H +) общая ≈ C(H +) по 1 стадии.

Пусть фосфорной кислоты продиссоциировало по первой стадии x моль/л, тогда из уравнения диссоциации H 3 PO 4 ⇆ H + + H 2 PO 4 – следует, что равновесные концентрации ионов H + и H 2 PO 4 – также будут равны x моль/л, а равновесная концентрация непродиссоциировавшей H 3 PO 4 будет равна (3,6–x) моль/л. Подставляем выраженные через x концентрации ионов H + и H 2 PO 4 – и молекул H 3 PO 4 в выражение константы диссоциации по первой стадии (K 1 = 7,5·10 –3 – справочная величина):

K 1 /C 0 = 7,5·10 –3 / 3,6 = 2,1·10 –3 < 10 –2 ; следовательно, иксом как слагаемым в знаменателе можно пренебречь (см. также пример 7.3) и упростить полученное выражение.

;

моль/л;

С(H +) = x = 0,217 моль/л; pH = –lg C(H +) = –lg 0,217 = 0,66.

(3,44%)

Задание №8

Рассчитайте а) pH растворов сильных кислот и оснований; б) раствора слабого электролита и степень диссоциации электролита в этом растворе (таблица 8). Плотность растворов принять равной 1 г/мл.


Таблица 8 – Условия задания №8

№ вари- анта а б № вари- анта а б
0,01М H 2 SO 4 ; 1% NaOH 0,35% NH 4 OH
0,01МCa(OH) 2 ; 2%HNO 3 1% CH 3 COOH 0,04М H 2 SO 4 ; 4% NaOH 1% NH 4 OH
0,5М HClO 4 ; 1% Ba(OH) 2 0,98% H 3 PO 4 0,7М HClO 4 ; 4%Ba(OH) 2 3% H 3 PO 4
0,02M LiOH; 0,3% HNO 3 0,34% H 2 S 0,06M LiOH; 0,1% HNO 3 1,36% H 2 S
0,1М HMnO 4 ; 0,1% KOH 0,031% H 2 CO 3 0,2М HMnO 4 ; 0,2%KOH 0,124%H 2 CO 3
0,4М HCl; 0,08%Ca(OH) 2 0,47% HNO 2 0,8МHCl; 0,03%Ca(OH) 2 1,4% HNO 2
0,05M NaOH; 0,81% HBr 0,4% H 2 SO 3 0,07M NaOH; 3,24% HBr 1,23% H 2 SO 3
0,02M Ba(OH) 2 ; 0,13%HI 0,2% HF 0,05M Ba(OH) 2 ; 2,5% HI 2% HF
0,02М H 2 SO 4 ; 2% NaOH 0,7% NH 4 OH 0,06МH 2 SO 4 ; 0,8%NaOH 5%CH 3 COOH
0,7М HClO 4 ; 2%Ba(OH) 2 1,96% H 3 PO 4 0,08М H 2 SO 4 ; 3% NaOH 4% H 3 PO 4
0,04MLiOH; 0,63%HNO 3 0,68% H 2 S 0,008M HI; 1,7%Ba(OH) 2 3,4% H 2 S
0,3МHMnO 4 ; 0,56%KOH 0,062% H 2 CO 3 0,08M LiOH; 1,3% HNO 3 0,2% H 2 CO 3
0,6М HCl; 0,05%Ca(OH) 2 0,94% HNO 2 0,01M HMnO 4 ; 1% KOH 2,35% HNO 2
0,03M NaOH; 1,62% HBr 0,82% H 2 SO 3 0,9МHCl; 0,01%Ca(OH) 2 2% H 2 SO 3
0,03M Ba(OH) 2 ; 1,26%HI 0,5% HF 0,09M NaOH; 6,5% HBr 5% HF
0,03М H 2 SO 4 ; 0,4%NaOH 3% CH 3 COOH 0,1M Ba(OH) 2 ; 6,4% HI 6%CH 3 COOH
0,002M HI; 3% Ba(OH) 2 1% HF 0,04МH 2 SO 4 ; 1,6%NaOH 3,5% NH 4 OH
0,005МHBr; 0,24% LiOH 1,64% H 2 SO 3 0,001М HI; 0,4%Ba(OH) 2 5% H 3 PO 4

Пример 7.5 Смешали 200 мл 0,2М раствора H 2 SO 4 и 300 мл 0,1М раствора NaOH. Рассчитайте pH образовавшегося раствора и концентрации ионов Na + и SO 4 2– в этом растворе.

Приведём уравнение реакции H 2 SO 4 + 2 NaOH → Na 2 SO 4 + 2 H 2 O к сокращённому ионно-молекулярному виду: H + + OH - → H 2 O

Из ионно-молекулярного уравнения реакции следует, что в реакцию вступают только ионы H + и OH – и образуют молекулу воды. Ионы Na + и SO 4 2– в реакции не участвуют, поэтому их количество после реакции такое же как и до реакции.

Расчёт количеств веществ до реакции:

n(H 2 SO 4) = 0,2 моль/л × 0,1 л = 0,02 моль = n(SO 4 2-);

n(H +) = 2 × n(H 2 SO 4) = 2 × 0,02 моль = 0,04 моль;

n(NaOH) = 0,1 моль/л · 0,3 л = 0,03 моль = n(Na +) = n(OH –).

Ионы OH – – в недостатке; они прореагируют полностью. Вместе с ними прореагирует столько же (т.е. 0,03 моль) ионов H + .

Расчёт количеств ионов после реакции:

n(H +) = n(H +) до реакции – n(H +) прореагировавших = 0,04 моль – 0,03 моль = 0,01 моль;

n(Na +) = 0,03 моль; n(SO 4 2–) = 0,02 моль.

Т.к. смешиваются разбавленные растворы, то

V общ. » Vраствора H 2 SO 4 + V раствора NaOH » 200 мл + 300 мл = 500 мл = 0,5 л.

C(Na +) = n(Na +) / V общ. = 0,03 моль: 0,5 л = 0,06 моль/л;

C(SO 4 2-) = n(SO 4 2-) / V общ. = 0,02 моль: 0,5 л = 0,04 моль/л;

C(H +) = n(H +) / V общ. = 0,01 моль: 0,5 л = 0,02 моль/л;

pH = –lg C(H +) = –lg 2·10 –2 = 1,699.

Задание №9

Рассчитайте pH и молярные концентрации катионов металла и анионов кис­лотного остатка в растворе, образовавшемся в результате смешивания раствора сильной кислоты с раствором щёлочи (таблица 9).

Таблица 9 – Условия задания №9

№ вари- анта № вари- анта Объёмы и состав растворов кислоты и щёлочи
300 мл 0,1М NaOH и 200 мл 0,2М H 2 SO 4
2 л 0,05М Ca(OH) 2 и 300 мл 0,2М HNO 3 0,5 л 0,1М KOH и 200 мл 0,25М H 2 SO 4
700 мл 0,1М KOH и 300 мл 0,1М H 2 SO 4 1 л 0,05М Ba(OH) 2 и 200 мл 0,8М HCl
80 мл 0,15М KOH и 20 мл 0,2М H 2 SO 4 400мл 0,05М NaOH и 600мл 0,02М H 2 SO 4
100 мл 0,1М Ba(OH) 2 и 20 мл 0,5М HCl 250 мл 0,4М KOH и 250 мл 0,1М H 2 SO 4
700мл 0,05М NaOH и 300мл 0,1М H 2 SO 4 200мл 0,05М Ca(OH) 2 и 200мл 0,04М HCl
50 мл 0,2М Ba(OH) 2 и 150 мл 0,1М HCl 150мл 0,08М NaOH и 350мл 0,02М H 2 SO 4
900мл 0,01М KOH и 100мл 0,05М H 2 SO 4 600мл 0,01М Ca(OH) 2 и 150мл 0,12М HCl
250 мл 0,1М NaOH и 150 мл 0,1М H 2 SO 4 100 мл 0,2М Ba(OH) 2 и 50 мл 1М HCl
1 л 0,05М Ca(OH) 2 и 500 мл 0,1М HNO 3 100 мл 0,5М NaOH и 100 мл 0,4М H 2 SO 4
100 мл 1М NaOH и 1900 мл 0,1М H 2 SO 4 25 мл 0,1М KOH и 75 мл 0,01М H 2 SO 4
300 мл 0,1М Ba(OH) 2 и 200 мл 0,2М HCl 100мл 0,02М Ba(OH) 2 и 150мл 0,04 М HI
200 мл 0,05М KOH и 50 мл 0,2М H 2 SO 4 1 л 0,01М Ca(OH) 2 и 500 мл 0,05М HNO 3
500мл 0,05М Ba(OH) 2 и 500мл 0,15М HI 250мл 0,04М Ba(OH) 2 и 500мл 0,1М HCl
1 л 0,1М KOH и 2 л 0,05М H 2 SO 4 500 мл 1М NaOH и 1500 мл 0,1М H 2 SO 4
250мл 0,4М Ba(OH) 2 и 250мл 0,4М HNO 3 200 мл 0,1М Ba(OH) 2 и 300 мл 0,2М HCl
80 мл 0,05М KOH и 20 мл 0,2М H 2 SO 4 50 мл 0,2М KOH и 200 мл 0,05М H 2 SO 4
300 мл 0,25М Ba(OH) 2 и 200 мл 0,3М HCl 1 л 0,03М Ca(OH) 2 и 500 мл 0,1М HNO 3

ГИДРОЛИЗ СОЛЕЙ

При растворении в воде любой соли происходит диссоциация этой соли на катионы и анионы. Если соль образована катионом сильного основания и анионом слабой кислоты (например, нитрит калия KNO 2), то нитрит-ионы будут связываться с ионами H + , отщепляя их от молекул воды, в результате чего образуется слабая азотистая кислота. В результате этого взаимодействия в растворе установится равновесие:

NO 2 – + HOH ⇆ HNO 2 + OH –

KNO 2 + HOH ⇆ HNO 2 + KOH.

Таким образом, в растворе соли, гидролизующейся по аниону, появляется избыток ионов OH – (реакция среды – щелочная; pH > 7).


Если соль образована катионом слабого основания и анионом сильной кислоты (например, хлорид аммония NH 4 Cl), то катионы NH 4 + слабого основания будут отщеплять ионы OH – от молекул воды и образовывать слабодиссоциирующий электролит – гидроксид аммония 1 .

NH 4 + + HOH ⇆ NH 4 OH + H + .

NH 4 Cl + HOH ⇆ NH 4 OH + HCl.

В растворе соли гидролизующейся по катиону появляется избыток ионов H + (реакция среды – кислая pH < 7).

При гидролизе соли, образованной катионом слабого основания и анионом слабой кислоты (например, фторид аммония NH 4 F) катионы слабого основания NH 4 + связываются с ионами OH – , отщепляя их от молекул воды, а анионы слабой кислоты F – связываются с ионами H + , в результате чего образуется слабое основание NH 4 OH и слабая кислота HF: 2

NH 4 + + F – + HOH ⇆ NH 4 OH + HF

NH 4 F + HOH ⇆ NH 4 OH + HF.

Реакция среды в растворе соли, гидролизующейся и по катиону, и по аниону определяется тем, какой из образующихся в результате гидролиза малодиссоциирующих электролитов является более сильным (это можно выяснить, сравнив константы диссоциации). В случае гидролиза NH 4 F среда будет кислой (pH<7), поскольку HF – более сильный электролит, чем NH 4 OH: KNH 4 OH = 1,8·10 –5 < K H F = 6,6·10 –4 .

Таким образом, гидролизу (т.е. разложению водой) подвергаются соли, образованные:

– катионом сильного основания и анионом слабой кислоты (KNO 2 , Na 2 CO 3 , K 3 PO 4);

– катионом слабого основания и анионом сильной кислоты (NH 4 NO 3 , AlCl 3 , ZnSO 4);

– катионом слабого основания и анионом слабой кислоты (Mg(CH 3 COO) 2 , NH 4 F).

C молекулами воды взаимодействуют катионы слабых оснований или (и) анионы слабых кислот ; соли образованные катионами сильных оснований и анионами сильных кислот гидролизу не подвергаются.

Гидролиз солей, образованных многозарядными катионами и анионами, протекает ступенчато; ниже на конкретных примерах показана последовательность рассуждений, которой рекомендуется придерживаться при составлении уравнений гидролиза таких солей.


Примечания

1. Как уже отмечалось ранее (см. примечание 2 на стр. 5) существует альтернативная точка зрения, согласно которой гидроксид аммония является сильным основанием. Кислая реакция среды в растворах солей аммония, образованных сильными кислотами, например, NH 4 Cl, NH 4 NO 3 , (NH 4) 2 SO 4 , объясняется при таком подходе обратимо протекающим процессом диссоциации иона аммония NH 4 + ⇄ NH 3 + H + или, более точно NH 4 + + H 2 O ⇄ NH 3 + H 3 O + .

2. Если гидроксид аммония считать сильным основанием, то в растворах солей аммония, образованных слабыми кислотами, например, NH 4 F следует рассматривать равновесие NH 4 + + F – ⇆ NH 3 + HF, в котором происходит конкуренция за ион H + между молекулами аммиака и анионами слабой кислоты.


Пример 8.1 Запишите в молекулярном и ионно-молекулярном виде уравнения реакций гидролиза карбоната натрия. Укажите pH раствора (pH>7, pH<7 или pH=7).

1. Уравнение диссоциации соли: Na 2 CO 3 ® 2Na + + CO 3 2–

2. Соль образована катионами (Na +) сильного основания NaOH и анионом (CO 3 2–) слабой кислоты H 2 CO 3 . Следовательно, соль гидролизуется по аниону:

CO 3 2– + HOH ⇆ … .

Гидролиз в большинстве случаев протекает обратимо (знак ⇄); на 1 ион, участвующий в процессе гидролиза, записывается 1 молекула HOH .

3. Отрицательно заряженные карбонат ионы CO 3 2– связываются с положительно заряженными ионами H + , отщепляя их от молекул HOH, и образуют гидрокарбонат ионы HCO 3 – ; раствор обогащается ионами OH – (щелочная среда; pH>7):

CO 3 2– + HOH ⇆ HCO 3 – + OH – .

Это ионно-молекулярное уравнение первой стадии гидролиза Na 2 CO 3 .

4. Уравнение первой стадии гидролиза в молекулярном виде, можно получить, соединив все имеющиеся в уравнении CO 3 2– + HOH ⇆ HCO 3 – + OH – анионы (CO 3 2– , HCO 3 – и OH –) с катионами Na + , образовав соли Na 2 CO 3 , NaHCO 3 и основание NaOH:

Na 2 CO 3 + HOH ⇆ NaHCO 3 + NaOH.

5. В результате гидролиза по первой стадии образовались гидрокарбонат ионы, которые участвуют во второй стадии гидролиза:

HCO 3 – + HOH ⇆ H 2 CO 3 + OH –

(отрицательно заряженные гидрокарбонат ионы HCO 3 – связываются с положительно заряженными ионами H + , отщепляя их от молекул HOH).

6. Уравнение второй стадии гидролиза в молекулярном виде, можно получить, связав имеющиеся в уравнении HCO 3 – + HOH ⇆ H 2 CO 3 + OH – анионы (HCO 3 – и OH –) с катионами Na + , образовав соль NaHCO 3 и основание NaOH:

NaHCO 3 + HOH ⇆ H 2 CO 3 + NaOH

CO 3 2– + HOH ⇆ HCO 3 – + OH – Na 2 CO 3 + HOH ⇆ NaHCO 3 + NaOH

HCO 3 – + HOH ⇆ H 2 CO 3 + OH – NaHCO 3 + HOH ⇆ H 2 CO 3 + NaOH.

Пример 8.2 Запишите в молекулярном и ионно-молекулярном виде уравнения реакций гидролиза сульфата алюминия. Укажите pH раствора (pH>7, pH<7 или pH=7).

1. Уравнение диссоциации соли: Al 2 (SO 4) 3 ® 2Al 3+ + 3SO 4 2–

2. Соль образована катионами (Al 3+) слабого основания Al(OH) 3 и анионами (SO 4 2–) сильной кислоты H 2 SO 4 . Следовательно, соль гидролизуется по катиону; на 1 ион Al 3+ записывается 1 молекула HOH: Al 3+ + HOH ⇆ … .

3. Положительно заряженные ионы Al 3+ связываются с отрицательно заряженными ионами OH – , отщепляя их от молекул HOH, и образуют ионы гидроксоалюминия AlOH 2+ ; раствор обогащается ионами H + (кислая среда; pH<7):

Al 3+ + HOH ⇆ AlOH 2+ + H + .

Это ионно-молекулярное уравнение первой стадии гидролиза Al 2 (SO 4) 3 .

4. Уравнение первой стадии гидролиза в молекулярном виде, можно получить, связав все имеющиеся в уравнении Al 3+ + HOH ⇆ AlOH 2+ + H + катионы (Al 3+ , AlOH 2+ и H +) с анионами SO 4 2– , образовав соли Al 2 (SO 4) 3 , AlOHSO 4 и кислоту H 2 SO 4:

Al 2 (SO 4) 3 + 2HOH ⇆ 2AlOHSO 4 + H 2 SO 4 .

5. В результате гидролиза по первой стадии образовались катионы гидроксо­алюминия AlOH 2+ , которые участвуют во второй стадии гидролиза:

AlOH 2+ + HOH ⇆ Al(OH) 2 + + H +

(положительно заряженные ионы AlOH 2+ связываются с отрицательно заряженными ионами OH – , отщепляя их от молекул HOH).

6. Уравнение второй стадии гидролиза в молекулярном виде, можно получить, связав все имеющиеся в уравнении AlOH 2+ + HOH ⇆ Al(OH) 2 + + H + катионы (AlOH 2+ , Al(OH) 2 + , и H +) с анионами SO 4 2– , образовав соли AlOHSO 4 , (Al(OH) 2) 2 SO 4 и кислоту H 2 SO 4:

2AlOHSO 4 + 2HOH ⇆ (Al(OH) 2) 2 SO 4 + H 2 SO 4 .

7. В результате второй стадии гидролиза образовались катионы дигидроксоалюминия Al(OH) 2 + , которые участвуют в третьей стадии гидролиза:

Al(OH) 2 + + HOH ⇆ Al(OH) 3 + H +

(положительно заряженные ионы Al(OH) 2 + связываются с отрицательно заряженными ионами OH – , отщепляя их от молекул HOH).

8. Уравнение третьей стадии гидролиза в молекулярном виде, можно получить, связав имеющиеся в уравнении Al(OH) 2 + + HOH ⇆ Al(OH) 3 + H + катионы (Al(OH) 2 + и H +) с анионами SO 4 2– , образовав соль (Al(OH) 2) 2 SO 4 и кислоту H 2 SO 4:

(Al(OH) 2) 2 SO 4 + 2HOH ⇆ 2Al(OH) 3 + H 2 SO 4

В результате этих рассуждений получаем следующие уравнения гидролиза:

Al 3+ + HOH ⇆ AlOH 2+ + H + Al 2 (SO 4) 3 + 2HOH ⇆ 2AlOHSO 4 + H 2 SO 4

AlOH 2+ + HOH ⇆ Al(OH) 2 + + H + 2AlOHSO 4 + 2HOH ⇆ (Al(OH) 2) 2 SO 4 + H 2 SO 4

Al(OH) 2 + + HOH ⇆ Al(OH) 3 + H + (Al(OH) 2) 2 SO 4 + 2HOH ⇆ 2Al(OH) 3 + H 2 SO 4 .

Пример 8.3 Запишите в молекулярном и ионно-молекулярном виде уравнения реакций гидролиза ортофосфата аммония. Укажите pH раствора (pH>7, pH<7 или pH=7).

1. Уравнение диссоциации соли: (NH 4) 3 PO 4 ® 3NH 4 + + PO 4 3–

2. Соль образована катионами (NH 4 +) слабого основания NH 4 OH и анионами

(PO 4 3–) слабой кислоты H 3 PO 4 . Следовательно, соль гидролизуется и по катиону, и по аниону : NH 4 + + PO 4 3– +HOH ⇆ … ; (на одну пару ионов NH 4 + и PO 4 3– в данном случае записывается 1 молекула HOH ). Положительно заряженные ионы NH 4 + связываются с отрицательно заряженными ионами OH – , отщепляя их от молекул HOH, образуя слабое основание NH 4 OH, а отрицательно заряженные ионы PO 4 3– связываются с ионами H + , образуя гидрофосфат ионы HPO 4 2– :

NH 4 + + PO 4 3– + HOH ⇆ NH 4 OH + HPO 4 2– .

Это ионно-молекулярное уравнение первой стадии гидролиза (NH 4) 3 PO 4 .

4. Уравнение первой стадии гидролиза в молекулярном виде, можно получить, связав имеющиеся в уравнении NH 4 + + PO 4 3– + HOH ⇆ NH 4 OH + HPO 4 2– анионы (PO 4 3– , HPO 4 2–) с катионами NH 4 + , образовав соли (NH 4) 3 PO 4 , (NH 4) 2 HPO 4:

(NH 4) 3 PO 4 +HOH ⇆ NH 4 OH + (NH 4) 2 HPO 4 .

5. В результате гидролиза по первой стадии образовались гидрофосфат анионы HPO 4 2– , которые вместе с катионами NH 4 + участвуют во второй стадии гидролиза:

NH 4 + + HPO 4 2– + HOH ⇆ NH 4 OH + H 2 PO 4 –

(ионы NH 4 + связываются с ионами OH – , ионы HPO 4 2– – с ионами H + , отщепляя их от молекул HOH, образуя слабое основание NH 4 OH и дигидрофосфат ионы H 2 PO 4 –).

6. Уравнение второй стадии гидролиза в молекулярном виде, можно получить, связав имеющиеся в уравнении NH 4 + + HPO 4 2– + HOH ⇆ NH 4 OH + H 2 PO 4 – анионы (HPO 4 2– и H 2 PO 4 –) с катионами NH 4 + , образовав соли (NH 4) 2 HPO 4 и NH 4 H 2 PO 4:

(NH 4) 2 HPO 4 +HOH ⇆ NH 4 OH + NH 4 H 2 PO 4 .

7. В результате второй стадии гидролиза образовались дигидрофосфат анионы H 2 PO 4 – , которые вместе с катионами NH 4 + участвуют в третьей стадии гидролиза:

NH 4 + + H 2 PO 4 – + HOH ⇆ NH 4 OH + H 3 PO 4

(ионы NH 4 + связываются с ионами OH – , ионы H 2 PO 4 – – с ионами H + , отщепляя их от молекул HOH и образуют слабые электролиты NH 4 OH и H 3 PO 4).

8. Уравнение третьей стадии гидролиза в молекулярном виде, можно получить, связав присутствующие в уравнении NH 4 + + H 2 PO 4 – + HOH ⇆ NH 4 OH + H 3 PO 4 анионы H 2 PO 4 – и катионами NH 4 + и образовав соль NH 4 H 2 PO 4:

NH 4 H 2 PO 4 +HOH ⇆ NH 4 OH + H 3 PO 4 .

В результате этих рассуждений получаем следующие уравнения гидролиза:

NH 4 + +PO 4 3– +HOH ⇆ NH 4 OH+HPO 4 2– (NH 4) 3 PO 4 +HOH ⇆ NH 4 OH+(NH 4) 2 HPO 4

NH 4 + +HPO 4 2– +HOH ⇆ NH 4 OH+H 2 PO 4 – (NH 4) 2 HPO 4 +HOH ⇆ NH 4 OH+NH 4 H 2 PO 4

NH 4 + +H 2 PO 4 – +HOH ⇆ NH 4 OH+H 3 PO 4 NH 4 H 2 PO 4 +HOH ⇆ NH 4 OH+H 3 PO 4 .

Процесс гидролиза протекает преимущественно по первой стадии, поэтому реакция среды в растворе соли, гидролизующейся и по катиону, и по аниону определяется тем, какой из малодиссоциирующих электролитов, образующихся на первой стадии гидролиза, является более сильным. В рассматриваемом случае

NH 4 + + PO 4 3– + HOH ⇆ NH 4 OH + HPO 4 2–

реакция среды будет щелочной (pH>7), поскольку ион HPO 4 2– – более слабый электролит, чем NH 4 OH: KNH 4 OH = 1,8·10 –5 > KHPO 4 2– = K III H 3 PO 4 = 1,3×10 –12 (диссоциация иона HPO 4 2– – это диссоциация H 3 PO 4 по третьей стадии, поэтому KHPO 4 2– = K III H 3 PO 4).

Задание №10

Запишите в молекулярном и ионно-молекулярном виде уравнения реакций гидролиза солей (таблица 10). Укажите pH раствора (pH>7, pH<7 или pH=7).

Таблица 10 – Условия задания №10

№ варианта Список солей № варианта Список солей
а) Na 2 CO 3 , б) Al 2 (SO 4) 3 , в) (NH 4) 3 PO 4 а) Al(NO 3) 3 , б) Na 2 SeO 3 , в) (NH 4) 2 Te
а) Na 3 PO 4 , б) CuCl 2 , в) Al(CH 3 COO) 3 а) MgSO 4 , б) Na 3 PO 4 , в) (NH 4) 2 CO 3
а) ZnSO 4 , б) K 2 CO 3 , в) (NH 4) 2 S а) CrCl 3 , б) Na 2 SiO 3 , в) Ni(CH 3 COO) 2
а) Cr(NO 3) 3 , б) Na 2 S, в) (NH 4) 2 Se а) Fe 2 (SO 4) 3 , б) K 2 S, в) (NH 4) 2 SO 3

Продолжение таблицы 10

№ варианта Список солей № варианта Список солей
а) Fe(NO 3) 3 , б) Na 2 SO 3 , в) Mg(NO 2) 2
а) K 2 CO 3 , б) Cr 2 (SO 4) 3 , в) Be(NO 2) 2 а) MgSO 4 , б) K 3 PO 4 , в) Cr(CH 3 COO) 3
а) K 3 PO 4 , б) MgCl 2 , в) Fe(CH 3 COO) 3 а) CrCl 3 , б) Na 2 SO 3 , в) Fe(CH 3 COO) 3
а) ZnCl 2 , б) K 2 SiO 3 , в) Cr(CH 3 COO) 3 а) Fe 2 (SO 4) 3 , б) K 2 S, в) Mg(CH 3 COO) 2
а) AlCl 3 , б) Na 2 Se, в) Mg(CH 3 COO) 2 а) Fe(NO 3) 3 , б) Na 2 SiO 3 , (NH 4) 2 CO 3
а) FeCl 3 , б) K 2 SO 3 , в) Zn(NO 2) 2 а) K 2 CO 3 , б) Al(NO 3) 3 , в) Ni(NO 2) 2
а) CuSO 4 , б) Na 3 AsO 4 , в) (NH 4) 2 SeO 3 а) K 3 PO 4 , б) Mg(NO 3) 2 , в) (NH 4) 2 SeO 3
а) BeSO 4 , б) K 3 PO 4 , в) Ni(NO 2) 2 а) ZnCl 2 , Na 3 PO 4 , в) Ni(CH 3 COO) 2
а) Bi(NO 3) 3 , б) K 2 CO 3 в) (NH 4) 2 S а) AlCl 3 , б) K 2 CO 3 , в) (NH 4) 2 SO 3
а) Na 2 CO 3 , б) AlCl 3 , в) (NH 4) 3 PO 4 а) FeCl 3 , б) Na 2 S, в) (NH 4) 2 Te
а) K 3 PO 4 , б) MgCl 2 , в) Al(CH 3 COO) 3 а) CuSO 4 , б) Na 3 PO 4 , в) (NH 4) 2 Se
а) ZnSO 4 , б) Na 3 AsO 4 , в) Mg(NO 2) 2 а) BeSO 4 , б) б) Na 2 SeO 3 , в) (NH 4) 3 PO 4
а) Cr(NO 3) 3 , б) K 2 SO 3 , в) (NH 4) 2 SO 3 a) BiCl 3 , б) K 2 SO 3 , в) Al(CH 3 COO) 3
а) Al(NO 3) 3 , б) Na 2 Se, в) (NH 4) 2 CO 3 a) Fe(NO 3) 2 , б) Na 3 AsO 4 , в) (NH 4) 2 S

Список литературы

1. Лурье, Ю.Ю. Справочник по аналитической химии / Ю.Ю. Лурье. – М. : Химия, 1989. – 448 с.

2. Рабинович, В.А. Краткий химический справочник / В.А. Рабинович, З.Я. Хавин – Л. : Химия, 1991. – 432 с.

3. Глинка, Н.Л. Общая химия / Н.Л. Глинка; под ред. В.А. Рабиновича. – 26-е изд. – Л.: Химия, 1987. – 704 с.

4. Глинка, Н.Л. Задачи и упражнения по общей химии: учебное пособие для вузов / Н.Л. Глинка; под ред. В. А. Рабиновича и Х.М. Рубиной – 22-е изд. – Л.: Химия, 1984. – 264 с.

5. Общая и неорганическая химия: конспект лекций для студентов технологических специальностей: в 2 ч. / Могилёвский государственный университет продовольствия; авт.-сост. В.А. Огородников. – Могилёв, 2002. – Ч. 1: Общие вопросы химии. – 96 с.


Учебное издание

ОБЩАЯ ХИМИЯ

Методические указания и контрольные задания

для студентов технологических специальностей заочной формы обучения

Составитель: Огородников Валерий Анатольевич

Редактор Т.Л Матеуш

Технический редактор А.А. Щербакова

Подписано в печать. Формат 60´84 1/16

Печать офсетная. Гарнитура Таймс. Печать трафаретная

Усл. печ. л.. Уч. изд. л. 3.

Тираж экз. Заказ.

Отпечатано на ризографе редакционно-издательского отдела

учреждения образования

«Могилёвский государственный университет продовольствия»

Несмотря на то, что вода считается неэлектролитом, она частично диссоциирует с образованием катиона гидроксония и гидроксид-аниона:

H 2 O + H 2 O H 3 O + + OH -

Часто используют упрощенную форму записи данного процесса:

H 2 O H + + OH -

Это равновесие характеризуется соответствующей константой:

Поскольку в чистой воде и разбавленных водных растворах = const, данное выражение можно преобразовать к следующему виду:

K W =

Полученная константа называется ионным произведением воды. При 25 °С K W = 10 -14 . Отсюда следует, что в чистой воде и нейтральных растворах = = Ö10 -14 = 10 -7 . Очевидно, что в кислых растворах > 10 -7 , а в щелочных < 10 -7 . На практике часто пользуются показателем концентрации катионов водорода - отрицательным десятичным логарифмом (pH = -lg). В кислых растворах рН < 7, в щелочных pH > 7, в нейтральной среде pH = 7. Аналогично можно ввести гидроксильный показатель pOH = -lg. Водородный и гидроксильный показатели связаны простым соотношением: pH + pOH = 14.

Рассмотрим примеры расчета рН водных растворов сильных и слабых кислот.

Пример № 1. Сантимолярный раствор (0,01 моль/л) соляной кислоты (сильная одноосновная кислота).

HCl = H + + Cl -

C HCl = 0,01; pH = -lg 0,01 = 2

Пример № 2. Сантимолярный раствор (0,01 моль/л) гидроксида натрия (сильное однокислотное основание).

NaOH = Na + + OH -

C NaOH = 0,01; pOH = -lg 0,01 = 2;

pH = 14 - pOH = 12

Пример № 3. Сантимолярный раствор (0,01 моль/л) уксусной кислоты (слабая одноосновная кислота).

CH 3 COO - + H + CH 3 COOH

Из уравнения реакции следует, что = . Для слабого электролита » C. Подставим эти формулы в константу кислотной диссоциации уксусной кислоты и преобразуем полученное выражение:

= 1,75×10 -5 ; ; »

рН = - lg = -1/2(lgK a + lgC) = 1/2(pK a - lgC) = 1/2(4,75 + 2) = 3,38

Пример № 4. Сантимолярный раствор (0,01 моль/л) аммиака (гидроксид аммония, слабое однокислотное основание).

NH 3 + H 2 O NH 4 + + OH -

Из уравнения реакции следует, что = . Так как гидроксид аммония слабый электролит, то » C. Подставив эти формулы в константу ионизации аммиака как основания, получим:

= 1,8×10 -5 ; ; =

рOН = -lg = 1/2(pK b - lgC);

pH = 14 - pOH = 14 + 1/2(lgC - pK b) = 14 + 1/2(-2 - 4,76) = 10,62

Гидролиз солей . Отличие кислотности водных растворов солей от кислотности чистой воды определяется их гидролизом. Гидролиз - это обменное взаимодействие растворенного вещества с водой . По склонности к гидролизу соли делятся на четыре типа:

1. Соли, образованные сильной кислотой и сильным основанием (например, NaCl, Na 2 SO 4), гидролизу не подвергаются. Водные растворы таких солей имеют нейтральную реакцию (рН = 7).

2. Соли, образованные слабым основанием и слабой кислотой, гидролизуются в значительной степени и часто необратимо, например,

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 ¯ + 3H 2 S

Кислотность их растворов определяется более растворимым веществом, и обычно близка к нейтральной (рН » 7).

3. Соли, образованные слабым основанием и сильной кислотой, гидролизуются обратимо, связывая гидроксид-анионы, и обуславливая кислую реакцию растворов (рН < 7). Например, гидролиз хлорида аммония можно описать следующими уравнениями:

NH 4 Cl + H 2 O NH 3 ×H 2 O + HCl

Из приведенных уравнений видно, что гидролизу подвергается не вся соль, а только ее катион. Катионы солей, образованных многокислотными слабыми основаниями, гидролизуются ступенчато, последовательно отщепляя от воды гидроксид-анионы:

Al 3+ + H 2 O Al(OH) 2+ + H +

Al(OH) 2+ + H 2 O Al(OH) 2 + + H +

Al(OH) 2 + + H 2 O Al(OH) 3 + H +

Суммарное уравнение гидролиза катиона алюминия имеет следующий вид:

Al 3+ + 3H 2 O Al(OH) 3 + 3H +

4. Соли, образованные сильным основанием и слабой кислотой, гидролизуются по аниону, который отрывает от воды катион водорода. Освобождающиеся гидроксид-анионы придают раствору щелочную реакцию (pH > 7). Например, гидролиз ацетата натрия протекает следующим образом:

CH 3 COONa + H 2 O CH 3 COOH + NaOH

Очевидно, что гидролиз анионов солей слабых многоосновных кислот протекает ступенчато, например,

PO 4 3- + H 2 O HPO 4 2- + OH -

HPO 4 2- + H 2 O H 2 PO 4 - + OH -

H 2 PO 4 - + H 2 O H 3 PO 4 + OH -

Суммарное уравнение гидролиза фосфат-аниона имеет следующий вид

PO 4 3- + 3H 2 O H 3 PO 4 + 3OH -

Гидролизу подвергаются не только соли, но и ковалентные неорганические и органические соединения. Например:

PCl 3 + 3H 2 O = H 3 PO 3 + 3HCl

Важную роль в жизнедеятельности живых организмов играет гидролиз некоторых биомолекул - белков и полипептидов, жиров, а также полисахаридов.

Глубина протекания гидролиза характеризуется степенью гидролиза (h) - отношением количества вещества, подвергшегося гидролизу, к общему количеству вещества в растворе . Обратимый гидролиз может быть охарактеризован также константой. Например, для процесса гидролиза ацетат-аниона константа гидролиза записывается следующим образом:

Равновесная концентрация воды в выражение константы гидролиза не входит, поскольку она постоянна и автоматически переносится в левую часть равенства.

Расчет константы и степени гидролиза, а также рНводных растворов солей рассмотрим на конкретных примерах.

Пример № 5. Сантимолярный раствор (0,01 моль/л) хлорида аммония (соль, образованная слабым основанием и сильной кислотой). Запишем уравнение гидролиза в ионной форме и составим выражение для константы гидролиза.

NH 4 + + H 2 O NH 3 ×H 2 O + H +

Умножив числитель и знаменатель правой части равенства на концентрацию гидроксид-ионов, константу гидролиза можно преобразовать следующим образом:

= 5,56×10 -10

Из уравнения гидролиза следует, что = = Ch, а = C - Ch = C(1-h). Соответственно,

Так как h << 1, а (1-h) ® 1, полученное выражение можно упростить:

; отсюда h »

» 2,36×10 -4 или 0,0236%

Из полученных уравнений видно, что константа и степень гидролиза соли увеличиваются с уменьшением константы диссоциации основания, т.е. с уменьшением его силы. Кроме этого, степень гидролиза и глубина его протекания увеличивается с уменьшением концентрации (увеличением разбавления) соли. Константа гидролиза, как и константа любого равновесия, от концентрации не зависит. Увеличение температуры приводит к увеличению степени и константы гидролиза, поскольку гидролиз - процесс эндотермический.

При расчете величины рН раствора соли учтем, что = , а в первом приближении » C.

; отсюда »

pH = - lg = -1/2(lgK w + lgC + pK b) = 7 - 1/2(pK b + lgC) = 7 - 1/2(4,76 - 2) = 5,62

Пример № 6. Сантимолярный раствор (0,01 моль/л) ацетата натрия (соль, образованная сильным основанием и слабой кислотой). Запишем уравнение гидролиза в ионной форме и составим выражение для константы гидролиза.

CH 3 COO - + H 2 O CH 3 COOH + OH -

Умножив числитель и знаменатель правой части равенства на концентрацию катиона водорода, его можно преобразовать к следующему виду:

= 1×10 -14 /1,75×10 -5 = 5,71×10 -10

Из уравнения гидролиза следует, что = = Ch, а = C - Ch = C(1-h).

Соответственно,

; ; отсюда h =

  • 6.Общая х-ка и аналитические р-ии катионов 3 аналит. Группы
  • Вопрос 7. Катионы IV аналитической группы.
  • Вопрос 8. Катионы V аналитической группы.
  • Вопрос 9. Катионы VI аналитической группы.
  • Вопрос 10. Систематический ход анализа катионов I- VI групп по кислотно-основной классификации.
  • Вопрос 11. Общая характеристика, классификация и способы обнаружения анионов.
  • Вопрос 12. Анализ неизвестного неорганического вещества. Предварительные испытания. Переведение анализируемого вещества в раствор. Проведение анализа.
  • 1.Расчет рН в растворах сильных кислот и оснований.
  • 2.Расчет рН в растворах слабых кислот и оснований
  • 3.Расчет рН в растворах гидролизующихся солей
  • 4.Расчет рН в растворах различных смесей кислот и оснований
  • 4.Буферные системы
  • 21.Применение орг. Реагентов в аналитической химии. Функц.-аналитическая группировка. Классификация орг. Реагентов по типу донорных атомов. Важн. Орг. Реагенты, исп. В хим. Анализе.
  • 23.Влияние различных факторов на растворимость малорастворимых электролитов. Общие принципы растворения осадков малорастворимых электролитов.
  • 24.Количественная оценка окисл.-восст. Способности в-в. …….
  • 25. Формальный электродный потенциал. Влияние различных факторов(температура, посторонние ионы, рН, побочные реакции) на протекание овр. Использование овр для маскировки нежелательного влияния ионов.
  • Вопрос 26.
  • Вопрос 27.
  • Вопрос 28.
  • Вопрос 29.
  • Вопрос 30.
  • 48.Броматометрическое титрование. Принцип метода. Условия проведения титрования. Титранты. Обнаружение конечной точки титрования. Практическое применение броматометрического титрования.
  • 49.Дихроматометрическое титрование. Принцип метода. Условия проведения титрования. Титранты. Обнаружение конечной точки титрования. Практическое применение дихроматометрического титрования.
  • 50.Цериметрическое титрование. Принцип метода. Условия проведения титрования. Титранты. Обнаружение конечной точки титрования. Практическое применение цериметрического титрования.
  • 51.Общая характеристика физических и физико-химических методов анализа. Классификация физических и физико-химических методов анализа.
  • Природа и свойства электромагнитного излучения. Классификация спектроскопических методов анализа по длине волны; по характеру взаимодействия с веществом; по типу частиц, участвующих в процессе.
  • 53.Основной закон поглощения электромагнитного излучения. Пропускание и оптическая плотность. Молярный и удельный коэффициенты поглощения. Использование в аналитической химии.
  • 54.Атомно-адсорбционная спектроскопия. Основные понятия. Аналитические возможности метода. Процессы, приводящие к возникновению аналитического сигнала. Измерение и обработка аналитического сигнала.
  • 56.Ик- спектроскопия. Аналитические возможности метода. Процессы, приводящие к возникновению аналитического сигнала. Измерение аналитического сигнала. Ик-спектроскопия с Фурье преобразованием.
  • 58.Люминесцентные методы анализа. Классификация, причины возникновения, основные характеристики и закономерности люминесценции. Тушение люминесценции.
  • 62.Общая характеристика газовой хроматографии. Теории хроматографического разделения – теоретических тарелок и кинетическая теория (Ван-Деемтера).
  • 66. Колоночная жидкостная хроматография
  • 67.Эксклюзионная хроматография
  • 69.Электрохимические методы анализа
  • 70. Кондуктометрический метод анализа
  • 72. Кулонометрический метод анализа. Общая характеристика. Прямая кулонометрия. Практическое применение. Кулонометрическое титрование. Практическое применение.
  • 73. Вольтамперометрический метод анализа. Полярография и собственно амперометрия. Условия, необходимые для вольтамперометрических измерений.
  • 74. Полярографическая кривая. Полярографическая волна. Потенциал полуволны. Уравнение Ильковича.
  • 1.Расчет рН в растворах сильных кислот и оснований.

    Расчет рН в растворах сильных одноосновных кислот и оснований проводят по формулам:

    рН = - lg C к и рН =14 + lg С о

    Где C к, С о –молярная концентрация кислоты или основания, моль/л

    2.Расчет рН в растворах слабых кислот и оснований

    Расчет рН в растворах слабых одноосновных кислот и оснований проводят по формулам:рН = 1/2 (рК к – lgC к) и рН = 14 - 1/2(рК О - lg C О)

    3.Расчет рН в растворах гидролизующихся солей

    Различают 3 случая гидролиза солей:

    а) гидролиз соли по аниону (соль образована слабой кислотой и сильным основанием, например CH 3 COO Na). Значение рН рассчитывают по формуле: рН = 7 + 1/2 рК к + 1/2 lg С с

    б) гидролиз соли по катиону (соль образована слабым основанием и сильной кислотой, например NH 4 Cl).Расчет рН в таком растворе ведут по формуле: рН = 7 - 1/2 рК о - 1/2 lg С с

    в) гидролиз соли по катиону и аниону (соль образована слабой кислотой и слабым основанием, например CH 3 COO NH 4). В этом случае расчет рН ведут по формуле:

    рН = 7 + 1/2 рК к - 1/2 рК о

    Если соль образована слабой многоосновной кислотой или слабым многопротонным основанием, то в перечисленные выше формулы (7-9) расчета рН подставляются значения рК к и рК о по последней ступени диссоциации

    4.Расчет рН в растворах различных смесей кислот и оснований

    При сливании кислоты и основания рН полученной смеси зависит от количеств взятой кислоты и основания и их силы.

    4.Буферные системы

    К буферным системам относятся смеси:

    а)слабой кислоты и ее соли, напримерCH 3 COO H + CH 3 COO Na

    б) слабого основания и его соли, например NH 4 OH + NH 4 Cl

    в) смесь кислых солей разной кислотности, например NaH 2 PO 4 + Na 2 HPO 4

    г) смесь кислой и средней солей, например NaНCO 3 + Na 2 CO 3

    д) смесь основных солей разной основности, например Al(OH) 2 Cl + Al(OH)Cl 2 и т.д.

    Расчет рН в буферных системах ведут по формулам: рН = рК к – lg C к /С с и рН = 14 – рК о + lg C о /С с

      Кислотно-основные буферные растворы, уравнение Гендерсона-Хассельбаха. Общая характеристика. Принцип действия. Расчет рН буферного раствора. Буферная емкость.

    Буферные растворы – системы, поддерживающие определенное значение какого-либо параметра (рН, потенциала системы и т.д.) при изменении состава системы.

    Кислотно-основный называется буферный раствор , сохраняющий примерно постоянным значение рН при добавлении к нему не слишком больших количеств сильной кислоты или сильного основания, а также при разбавлении и концентрировании. Кислотно-основные буферные растворы содержат слабые кислоты и сопряженные с ним основания. Сильная кислота при добавлении к буферному раствору»превращается» в слабую кислоту, а сильное основание – в слабое основание. Формула для расчета рН буферного раствора: рН = рК о + lg C о с Это уравнение Гендерсона – Хассельбаха . Из этого уравнения следует, что рН буферного раствора зависит от соотношения концентраций слабой кислоты и сопряженного с ней основания. Поскольку при разбавлении это соотношение не изменяется, то и рН раствора остается постоянным. Разбавление не может быть безграничным. При очень значительном разбавлении рН раствора изменится, так как, во-первых, концентрации компонентов встанут настолько малыми, что уже нельзя будет пренебречь автопротолизом воды, а во-вторых, коэффициенты активности незаряженных и заряженных частиц по-разному зависят от ионной силы раствора.

    Буферный раствор сохраняет постоянные величины рН при добавлении лишь не очень больших количеств сильной кислоты или сильного основания. Способность буферного раствора «сопротивляться» изменению рН зависит от соотношения концентраций слабой кислоты и сопряженного с ней основания, а также от их суммарной концентрации – и характеризуется буферной емкостью.

    Буферная емкость – отношение бесконечно малого увеличения концентрации сильной кислоты или сильного основания в растворе(без изменения объема) в вызванному этим увеличением изменению рН(стр.239, 7.79)

    В сильнокислой и сильнощелочной среде буферная емкость значительно увеличивается. Растворы, в которых достаточно высока концентрация сильной кислоты или сильного основания, также обладают буферными свойствами.

    Буферная емкость максимальна при рН=рКа. Для поддержания некоторого значения рН следует использовать такой буферный раствор, у которого величина рКа входящий в его состав слабой кислоты находится как можно ближе к этому рН. Буферный раствор имеет смысл использовать для поддержания рН, находящегося в интервале рКа + _ 1 . Такой интервал называется рабочей силой буфера.

    19.Основные понятия, связанные с комплексными соединениями. Классификация комплексных соединений. Константы равновесия, используемые для хар-ки комплексных соединений: константы образования, константы диссоциации (общие, ступенчатые, термодинамические, реальные и условные концентрационные)

    Чаще всего комплексом называют частицу, образованную в рез-те донорно-акцепторного взаимодействия центрального атома(иона), называемого комплексообразователем, и заряженных или нейтральных частиц, называемых лигандами. Комплексообразователь и лиганды должны самостоятельно существовать в той среде, где происходит р-ция комплексообразования.

    Комплексное соединение состоит из внутренней и внешней сфер. К3(Fe(CN)6)- К3-внешняя сфера, Fe-комплексообразователь, CN- лиганд, комплексообразователь+ лиганд=внутренняя сфера.

    Дентатностью называется число донорных центров лиганда, участвующих в донорно-акцепторном взаимодействии при образовании комплексной частицы. Лиганды бывают монодентатными(Cl-, H2O, NH3), бидентатными(C2O4(2-), 1,10-фенантролин) и полидентатными.

    Координационным числом называют число донорных центров лигандов, с которыми взаимодействует данный центральный атом. В выше указанном примере: 6-координационное число. (Ag(NH3)2)+ –координационное число 2, так как аммиак монодентатным лигандом, а в (Ag(S2O3)2)3- - координационное число 4, так как тиосульфат ион –бидентатный лиганд.

    Классификация.

    1)В зависимости от своего заряда: анионные((Fe(CN)6)3-), катионными((Zn(NH3)4)2 +) и незаряженными или комплексы-неэлектролиты(HgCl2).

    2)В зависимости от числа атомов металла: моноядерные и полиядерные комплексы. В состав моноядерного комплекса входит один атом металла, а в состав полиядерного- два и более. Полиядерные комплексные частицы, содержащие одинаковые атомы металла, называют гомоядерными(Fe2(OH)2)4+ или Be3(OH)3)3+), а содержащие атомы различных металлов- гетероядерными(Zr2Al(OH)5)6+).

    3)В зависимости от хар-ра лигандов: однороднолигандные и разнолигандные (смешаннолигандные) комплексы.

    Хелаты-циклические комплексные соединения ионов металлов с полидентатными лигандами(обычно органическими), в которых центральный атом входит в состав одного или нескольких циклов.

    Константы . Прочность комплексного иона характеризуется его константой диссоциации, называемой константой нестойкости.

    Если справочные данные по ступенчатым константам нестойкости отсутствуют, пользуются общей константой нестойкости комплексного иона:

    Общая константа нестойкости равна произведению ступенчатых констант нестойкости.

    В аналитической химии вместо констант нестойкости в последнее время пользуются константами устойчивости комплексного иона:

    Константа устойчивости относится к процессу образования комплексного иона и равна обратной величине константы нестойкости: Куст = 1/Кнест.

    Константа устойчивости характеризует равновесие образования комплекса.

    Термодинамическая и концентрационная константы см. стр. 313.

    20. Влияние различных факторов на процесс комплексообразования и устойчивость комплексных соединений. Влияние концентрации реагирующих в-в на комплексообразование. Расчет молярных долей свободных ионов металла и комплексов в равновесной смеси.

    1)Устойчивость комплексных соединений зависит от природы комплексообразователя и лигандов. Закономерность изменения устойчивости многих комплексов металлов с различными лигандами можно объяснить с пом. Теории жестких и мягких кислот и оснований(ЖМКО): мягкие кислоты образуют более устойчивые соединения с мягкими основаниями, а жесткие- с жесткими.(напр., Al3+,B3+(ж. к-ты) образовывают комплексы с O- и N-сод. Лигандами(ж. основаниями), а Ag+ или Hg2+ (м. к-ты) с S-сод. Лигандами(м. осн.). Комплексы катионов металлов с полидентатными лигандами явл. Более устойчивыми, чем комплексы с аналогичными монодентатными лигандами.

    2)ионная сила. При повышении ионной силы и уменьшения коэффициентов активности ионов устойчивость комплекса уменьшается.

    3)температура. Если при образовании комплекса дельта Н больше 0, то при повышении температуры устойчивость комплекса увеличивается, если же дельта Н меньше 0, то уменьшается.

    4)побочные р-ции. Влияние рН на устойчивость комплексов зависит от природы лиганда и центрального атома. Если в состав комплекса в качестве лиганда входит более или менее сильное основание, то при понижении рН происходит протонирование таких лигандов и уменьшение молярной доли формы лиганда, участвующей в образовании комплекса. Влияние рН будет тем сильнее, чем больше сила данного основания и чем меньше устойчивость комплекса.

    5)концентрация. При возрастании концентрации лиганда увеличивается содержание комплексов с большим координационным числом и уменьшается концетрация свободных ионов металла. При избытке ионов металла в р-ре будет доминировать монолигандный комплекс.

    Молярная доля ионов металла, не связанных в комплексы

    Молярная доля комплексных частиц

    Федеральное агентство по образованию РФ

    Новгородский Государственный Университет им. Ярослава Мудрого

    Кафедра химии и экологии

    Водородный показатель

    Гидролиз солей

    Великий Новгород

    Водородный показатель: Метод указ. / Сост. ; ; /

    НовГУ им. Ярослава Мудрого, - Великий Новгород, 2012

    Рассмотрены теоретические методы расчета и экспериментальные способы определения концентрации водородных ионов в растворах электролитов (рН растворов).

    Методические указания предназначены для студентов всех специальностей, изучающих курс химии.

    Утверждено на заседании кафедры химии и экологии НовГУ им. Ярослава Мудрого ……………….

    Зав. кафедрой ХиЭ

    ВВЕДЕНИЕ

    Протекание различных химических процессов сильно зависит от реакции среды в растворе. Поэтому величина рН раствора является важнейшим показателем, который необходимо контролировать как при проведении реакций в научно-исследовательских лабораториях, так и в ходе разнообразных технологических процессов.

    Настоящая лабораторная работа даёт возможность освоить способы измерения и методы расчёта рН в водных растворах электролитов. Перед её выполнением необходимо усвоить понятия: ионное произведение воды, характер среды, индикатор, гидролиз солей, водородный показатель.

    I. ЦЕЛЬ РАБОТЫ

    Изучить методы расчета рН растворов электролитов.

    Освоить методы определения рН растворов.

    2. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ


    2.1. Водородный показатель. Ионное произведение воды

    Водородный показатель (рН) величина, характеризующая активность или концентрацию ионов водорода в растворах. Водородный показатель обозначается рН.

    Водородный показатель численно равен отрицательному десятичному логарифму активности или концентрации ионов водорода, выраженной в молях на литр:

    https://pandia.ru/text/80/203/images/image002_74.gif" width="134" height="31 src=">

    Константа диссоциации при 22° С составляет

    https://pandia.ru/text/80/203/images/image004_50.gif" width="370" height="33">

    Для воды и ее растворов произведение концентраций ионов Н+ и ОН- величина постоянная при данной температуре. Она называется ионным произведением воды и при 25° С составляет .

    Постоянство ионного произведения воды дает возможность вычис­лить концентрацию ионов если известна концентрация ионов ОН
    и наоборот: https://pandia.ru/text/80/203/images/image010_29.gif" width="72" height="21">,эти концентрации (каждая из них) равны моль/л, т..gif" width="93" height="21 src="> и

    рОН=-lg[ OH-]

    Если >10https://pandia.ru/text/80/203/images/image015_26.gif" width="15" height="19 src=">моль/л -среда кислая; рН<7.

    Если <10https://pandia.ru/text/80/203/images/image015_26.gif" width="15" height="19 src=">моль/л -среда щелочная; рН>7.

    В любом водном растворе рН + рОН =14, где Биологическая хиимя" href="/text/category/biologicheskaya_hiimya/" rel="bookmark">биохимических процессов, для различных производственных процессов, при изучении свойств природных вод и возможности их применения и т.д.

    2.2 Вычисление рН растворов кислот и оснований.

    Для вычисления рН растворов кислот и оснований следует пред­варительно вычислить молярную концентрацию свободных ионов водорода () или свободных гидроксил ионов (https://pandia.ru/text/80/203/images/image018_20.gif" width="75" height="21 src=">; рОН-=-lg[ OH-]; рН + рОН =14

    Концентрация любого иона в моль/л в растворе электролита можно вычислить по уравнению

    https://pandia.ru/text/80/203/images/image020_18.gif" width="13" height="13 src=">-степень диссоциации электролита;

    n -количество ионов данного вида, которое получается при распаде одной молекулы электролита.

    Если электролит слабый, то значение степени диссоциации может быть определено на основании закона разбавления Оствальда:

    https://pandia.ru/text/80/203/images/image019_20.gif" width="120" height="24 src=">= √ СмКдис

    Пример 1. Вычислить рН 0,001H раствора гидроксида натрия.

    Решение: гидроксид натрия является сильным электролитом, дис­социация в водном растворе происходит по схеме:

    https://pandia.ru/text/80/203/images/image008_33.gif" width="11" height="19">(моль/л) в растворе равна:


    Пример 2. Вычислить рН 1%-ного раствора муравьиной кислоты, считая, что плотность раствора равна 1г/мл; Кдисс =

    Решение: 1л раствора содержит 10г НСООН, что составляет 10/46= =0,22моль, где 4б г/моль - молярная масса муравьиной кис­лоты. Следовательно, молярная концентрация раствора равна 0,22моль/л. Муравьиная кислота – слабый электролит, поэтому

    https://pandia.ru/text/80/203/images/image026_17.gif" width="135" height="20 src=">,

    https://pandia.ru/text/80/203/images/image014_29.gif" width="28" height="21"> и


    [Н+] = 10-рН =10-4,3 = 5∙10-5моль/л; моль/л.


    2.3. Реакция в растворах солей. Гидролиз.

    Реакция водного раствора зависит не только от наличия в нем кислот или оснований, но также и от присутствия некоторых солей. Многие соли, растворяясь в воде, способны смещать реакцию среды в ту или иную сторону. При этом происходит

    химическое взаимодействие между ионами соли и молекулами воды, сопровождающееся образо­ванием слабых кислот или слабых оснований или малодиссоциируемых ионов. Эта реакция получила название гидролиза солей.

    Гидролиз соли - это обратимый, обменный процесс взаимодействия ионов соли с водой, приво­дящий к образованию слабых электролитов. В результате гидролиза изменяется кислотность среды.

    Рассмотрим наиболее типичные случаи гидролиза солей.

    1. Соль, образованная слабым основанием и сильной кислотой (гидролиз по катиону).


    В растворе накапливаются ионы, в результате чего реакция сме­щается в кислую сторону, рН в растворах солей подобного типа меньше7.

    2. Соль, образованная сильным основанием и слабой кислотой (гидролиз по аниону).

    https://pandia.ru/text/80/203/images/image032_16.gif" width="28" height="20"> в растворе, среда щелочная, рН>7.

    3. Соль, образованная слабой кислотой и слабым основанием (гидролиз по катиону и по аниону).

    Аммоний" href="/text/category/ammonij/" rel="bookmark">аммония происходит образование двух слабых электролитов, раствор ока­зывается близким к нейтральному, рН~7.

    4. Соль, образованная сильным основанием и сильной кислотой.

    Соли подобного типа гид­ролизу не подвергаются..gif" width="28" height="20"> воды слабодиссоциируюших или труднорастворимых соединений, равно­весие между ионами и молекулами воды не нарушается и раствор остается нейтральным, рН равен 7.

    Особенности гидролиза солей, образованных слабыми многоосновными кислотами, а также солей, образованных слабыми многокислотными основаниями.

    Гидролиз солей, образованных слабыми многоосновными кислотами, а также солей, образованных слабыми многоосновными основаниями, протекает ступенчато. В результате гидролиза по первой ступени об­разуются соответственно кислая или основная соль:

    https://pandia.ru/text/80/203/images/image032_16.gif" width="28" height="20"> и препятствует дальнейшему протеканию гидролиза, и по второй ступени гидролиз практически не протекает.

    2.4 Вычисление p H растворов солей

    В качестве примера возьмем гидролиз ацетата натрия:

    https://pandia.ru/text/80/203/images/image036_15.gif" width="207" height="23 src=">

    Константа равновесия этой реакции

    Так как концентрация воды практически остается постоянной, ее можно объединить с константой равновесия:

    https://pandia.ru/text/80/203/images/image032_16.gif" width="28" height="20"> через ионное произведение воды [ и

    подставив эту величину в уравнение Кг получаем

    https://pandia.ru/text/80/203/images/image041_13.gif" width="32" height="19"> - константа диссоциации слабой кислоты.

    В общем случае, если исходную концентрацию аниона слабой кислоты Аобозначить через С моль/л, то Ch моль/л – это концентрация той части аниона А, которая подверглась гидролизу и образовала Ch моль/л слабой кислоты HA и Ch моль/л гидроксильных ионов:

    где: h – степень гидролиза, т.е доля молекул соли, подвергающихся гидролизу.

    Константа гидролиза соли:

    https://pandia.ru/text/80/203/images/image046_12.gif" width="52" height="23 src=">откуда .

    Так как , то

    Аналогично соотношение можно получить и при рассмотрении гидролиза соли слабого основания и сильной кислоты:

    https://pandia.ru/text/80/203/images/image052_9.gif" width="172" height="41 src=">

    Константа гидролиза определяется уравнением:

    https://pandia.ru/text/80/203/images/image054_9.gif" width="33" height="20">- константа диссоциации слабого основания по 2-ой ступени.

    Пример 4. Определить pH 0.02Н раствора соды Na2C03, учитывая только первую ступень гидролиза.

    Решение: Гидролиз соли протекает по уравнению

    https://pandia.ru/text/80/203/images/image056_8.gif" width="121" height="21">

    Выполнение работ" href="/text/category/vipolnenie_rabot/" rel="bookmark">выполнении работ следует выполнять общие правила техники безопасности для химических лабораторий. При попадании реактивов на кожу или одежду пораженный участок необходимо быстро обильно промыть водой.

    4. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

    Опыт №1. Определение рН при помощи индикаторов.

    Для проведения опыта на рабочем столе находятся 5 банок с растворами электролитов. Внесите в первую колонку таблицы1формулы этих пяти электролитов и во вторую колонку (данная) значения их концентрации. На одной банке не указана концентрация (во второй колонке поставить прочерк) – раствор этого электролита будет использоваться и в первом, и во втором опытах.

    Определите окраску индикаторов в растворах указанных пяти электролитов .

    а) Для этого налейте в пробирки по 1мл растворов и добавьте в каждую пробирку 1-2 капли фенолфталеина . Результаты наблюдений запишите в табл.1,используя данные Приложения (таблица 1). Пробирки хорошо помыть для продолжения опыта.

    б) Опыт повторите с использованием индикатора метилового оранжевого . Результаты наблюдений также запишите в табл. 1.

    в) Для приближенного определения рН раствора пользуются универсальной индикаторной бумагой , или универсальными индикаторами, представляющими собой смесь нескольких индикаторов с различными областями перехода. По прилагаемой к универсальной индикаторной бумаге цветной шкале устанавливают, при каких значениях рН индикаторная бумага окрашивается в тот или иной цвет.

    Стеклянной палочкой (или пробкой) нанесите 2-3 капли исследуемого раствора на универсальную индикаторную бумагу, сравните окраску еще сырого пятна с цветной шкалой. Результаты наблюдений внесите в табл. 1

    Таблица 1

    Фор-мула элект-ролита

    Концентрация электролита

    Фенолфталеин

    Метиловый

    оранжевый

    Универсаль-ный

    индикатор

    рН по показа-нию рН-метра

    Кдис слабого электро-лита

    Расчет-ное

    значение

    Опыт 2. Потенциометрическое определение рН.

    Опыт выполняется под руководством лаборанта.

    В кювету налить раствор электролита с неизвестной концентрацией и погрузить в нее электроды. Перед погружением в контрольный раствор электроды надо тщательно промыть дистиллированной водой и удалить с поверхности избыток воды фильтровальной бумагой.

    Отсчет величины рH по шкале прибора следует производить после того, как показания примут установившееся значение.

    Результат измерения внести в табл. 1 (рН по показанию рН-метра) на других строках колонки поставить прочерки.

    Сущность потенциометрического метода :

    При погружении электрода в раствор между поверхностью шарика стеклянного (литиевого) электрода и раствором происходит обмен ионами, в результате которого ионы лития в поверхностных слоях замещаются ионами и стеклянный электрод приобретает свойства водородного электрода. Между поверхностью стекла и контрольным раствором возникает разность потенциалов ,величина которой определяется концентрацией ионов в растворе и температурой раствора:

    https://pandia.ru/text/80/203/images/image060_8.gif" width="275" height="148">

    1-полый шарик из электродного (литиевого) стекла;

    2-стеклянный электрод;

    3-внутренний контактный электрод;

    4-вспомогательный электрод;

    5-электролитический ключ;

    6-пористая перегородка;

    7-рН-метр рН-673.

    Задание № 3.Теоретическое:

    а) для раствора кислоты или основания с неизвестной концентрацией:

    Написать уравнение электролитической диссоциации с учетом силы электролита;Для слабых электролитов в таблицу1 внести значения константы диссоциации(к1),

    используя Приложение, таблица2;

    - в растворе кислоты, используя значение рН по рН-метру, рассчитать концентрацию ионов водорода по формуле [Н+] = 10-рН;

    -в растворе основания, используя значение рН по рН-метру, найти рОН=14-рН и сделать расчет концентрации гидроксид - ионов по формуле [ОН-] = 10-рОН;

    Выразить из соответствующей формулы для расчета иона сильного или слабого электролита значение концентрации и сделать расчет.

    б) для растворов кислот или оснований с известной концентрацией:

    Написать уравнение электролитической диссоциации электролита. Указать обратим ли процесс для данного электролита;Для слабых электролитов в таблицу1 внести значения константы диссоциации(к1), используя Приложение, таблица2;

    в) для раствора соли:

    сделать перерасчет данной концентрации в молярную концентрацию. Плотность раствора принять равной 1г/мл;

    Написать уравнение электролитической диссоциации электролита. Указать обратим ли процесс для данного электролита;

    Написать молекулярные и ионно-молекулярные уравнения гидролиза по 1 ступени, указать по какому иону протекает гидролиз, кислотность среды и рН (< 7, > 7 или = 7);

    Для слабых электролитов, ионы которых подвергаются гидролизу, в таблицу1 внести значения константы диссоциации по последней ступени(к, к2 или к3), используя Приложение, таблица2;

    Сравнить расчетное значение с показаниями опыта1, сделать вывод.

    г) основываясь на результатах наблюдения, сделайте вывод :

    Можно ли с помощью фенолфталеина отличить: 1)кислую среду от нейтральной; 2)нейтральную от слабощелочной рН=8; 3) слабощелочную от умеренно щелочной рН=11?





    

    2024 © mgp3.ru.